

Fig. 1. Perspective view of the title molecule (ORTEPII; Johnson, 1976) with 30% probability ellipsoids.
$\mathrm{O}(2)-\mathrm{C}(7)$ bond $\quad\left[D_{s}(\mathrm{~S})=0.0081\right.$ (21) (Nardelli, 1983)]. Such a conformation is quite similar to that reported by Uang, Liu \& Wang (1990) for an oxathiolanone bornane derivative and is also in agreement with the structure suggested for several oxathiolanones by Farines (1973) and Pihlaja, Nikkila, Neuvonen \& Keskinen (1976) from NMR data. The two quite different $\mathrm{S}-\mathrm{C}$ distances observed in this ring can be justified taking into account the different values between the angles $\mathrm{S}-\mathrm{C}(8)-\mathrm{C}(7) \quad\left[107.5(4)^{\circ}\right] \quad$ and $\quad \mathrm{S}-\mathrm{C}(1)-\mathrm{O}(2)$ [104.7 (3) ${ }^{\circ}$. Therefore, the hybridization (and hence the overlapping ability and electronegativity) of both $\mathrm{C}(8)$ and $\mathrm{C}(1)$ atoms will vary with the internal angle and there is no single rule for predicting the results. Finally, the ${ }^{1} \mathrm{H}$ NMR spectra for this compound clearly show the anisotropic influence of the $\mathrm{S}-\mathrm{O}(1)$ bond on the two protons bonded to the $\mathrm{C}(8)$ atom, which are each located at different sides of the ring.

Obviously, the position of the $\mathrm{S}=\mathrm{O}(1)$ bond, almost perpendicular to this ring, destroys their magnetic equivalence, so they then appear as an $A B$ spin system ($J=17.7 \mathrm{~Hz}$).

This research was supported by CICYT (grant PB89-0417).

References

barton, D. H. R. \& Willis, B. J. (1972). J. Chem. Soc. Perkin Trans. 1, pp. 305-310.
Corfield, P. W. R., Doedens, R. J. \& Ibers, J. A. (1967). Inorg. Chem. 6, 197-204.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farines, M. (1973). Contribution à l'Etude de quelques Hétérocycles à Cinq Éléments. Thesis, pp. 75-80. Univ. of Perpignan, France.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerco, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
Pedersen, C. T. (1969). Acta Chem. Scand. 23, 489-498.
Pihlaja, C., NikKila, A., Neuvonen, K. \& Keskinen, R. (1976). Acta Chem. Scand. Ser. A, 30, 457-460.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Uang, B.-J., Liu, H.-H. \& Wang, S.-L. (1990). Acta Cryst. C46, 1167-1168.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1992). C48, 1525-1527

Structure of Tris(phenylthio)phosphine Sulfide

By R. K. Shibao, N. L. Keder and H. Eckert
Department of Chemistry, University of California at Santa Barbara, Goleta, California 93106, USA

(Received 2 August 1991; accepted 17 December 1991)

Abstract

C}_{18} \mathrm{H}_{15} \mathrm{PS}_{4}, M_{r}=390.5\), monoclinic, $P 2_{1} / n$, $a=10.1406$ (5), $b=10.1948$ (6), $c=18.870$ (1) \AA, β $=97.253(2)^{\circ}, \quad V=1935.2(3) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.34 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA \quad$ (graphite monochromator), $\mu=5.49 \mathrm{~cm}^{-1}, F(000)=808, T=$ $297 \mathrm{~K}, R=0.045$ for 2507 observed reflections with I $>3 \sigma(I)$. Distances: $\mathrm{P}=\mathrm{S} 1.899(1), \mathrm{P}-\mathrm{S}$ (av.) 2.102 (2) \AA; angles (av.): $\mathrm{S}=\mathrm{P}-\mathrm{S} 117.1$ (3), $\mathrm{S}-\mathrm{P}-\mathrm{S}$ $109.9(2)^{\circ}$. These are the first crystallographic data for the $\operatorname{SP}(\mathrm{SCR})_{3}$ unit.

Experimental. SPCl_{3} (Aldrich) was slowly added to $\mathrm{NaSC}_{6} \mathrm{H}_{5}$ (Shibao, Keder \& Eckert, 1990) in thiophenol under an N_{2} atmosphere at 295 K and allowed to react. The mixture was filtered and colorless crystals (plates) formed by slow solvent evaporation at room temperature. X-ray measurements were performed on a crystal $0.58 \times 0.71 \times 0.16 \mathrm{~mm}$ using a Huber (Crystal-Logic automated) four-circle diffractometer with $\theta / 2 \theta$ scan mode to a maximum 2θ of 50° at a scan speed of $6^{\circ} \mathrm{min}^{-1}$. Lattice
parameters were determined from 35 reflections in the range $6.0<2 \theta<23.1^{\circ}$. Analytical absorption correction; maximum/minimum transmission factors were $0.887 / 0.711$ (Busing \& Levy, 1957). Maximum $\sin \theta / \lambda$ of $0.595 \AA^{-1} ; h, k, l$ range, $0-12,0-12$, -22-22. Three standard reflections were measured after every 97 reflections and showed no significant variation in intensity $\left[\left(I_{\max }-I_{\min }\right) / I_{\mathrm{av}}=0.027\right] .3823$ reflections were measured, 3606 were unique ($R_{\text {int }}=$ 2.3%) and 1099 were unobserved with $I<3 \sigma(I)$. The direct methods program SHELXS86 (Sheldrick, 1985) was used in solving the structure; P and S atoms located; C atoms were located by full-matrix least-squares refinement and difference Fourier syntheses; P, S and C positions and anisotropic thermal parameters were refined; $\quad \sum w\left|\left|F_{o}\right|-\left|F_{c}\right|^{2}\right.$ minimized where $w=1 /\left[\sigma\left(F_{o}\right)\right]^{2}$. H-atom positions were calculated ($\mathrm{C}-\mathrm{H}$ bond length $1.0 \AA$) and included as fixed contributors with isotropic thermal parameters fixed to $5.0 \AA^{2} .208$ parameters refined; $R=0.045$, $w R=0.062, S=1.93 ;(\Delta / \sigma)_{\text {max }} 0.012 ; \Delta \rho_{\text {max }} / /_{\text {min }}=$ $0.46 /-0.44 \mathrm{e} \AA^{-3}$. Scatering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV). The UCLA Crystallographic Program Package (Strouse, 1985) was used throughout.

Fig. 1. ORTEPII (Johnson, 1976) drawing (50\% probability ellipsoids) of $\mathrm{SP}\left(\mathrm{SC}_{6} \mathrm{H}_{5}\right)_{3}$.

Fig. 2. Packing diagram (a axis towards viewer, c axis horizontal).

Table 1. Atomic coordinates and equivalent isotropic temperature factors $\left(\AA^{2} \times 10^{4}\right)$ with e.s.d.'s in parentheses

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i}, \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
$\mathrm{P}(1)$	0.12174 (9)	0.44007 (9)	0.33194 (5)	536 (6)
S(1)	0.2208 (1)	0.5388 (1)	0.27163 (5)	666 (7)
S(2)	0.0345 (1)	0.26403 (9)	0.29126 (5)	669 (7)
S(3)	-0.04433 (9)	0.5319 (1)	0.36620 (6)	684 (7)
S(4)	0.2246 (1)	0.3751 (1)	0.42937 (5)	697 (7)
C(21)	-0.0232 (4)	0.3086 (3)	0.2008 (2)	582 (23)
C(22)	-0.1558 (4)	0.3373 (4)	0.1818 (2)	725 (28)
C(23)	-0.2003 (4)	0.3667 (5)	0.1109 (2)	835 (32)
C(24)	-0.1140 (5)	0.3701 (4)	0.0606 (2)	773 (30)
C(25)	0.0181 (5)	0.3413 (4)	0.0801 (2)	763 (30)
C(26)	0.0654 (4)	0.3102 (4)	0.1502 (2)	696 (27)
C(31)	0.0214 (3)	0.6900 (3)	0.3895 (2)	578 (23)
C(32)	0.0639 (4)	0.7198 (5)	0.4601 (2)	769 (31)
C(33)	0.1077 (5)	0.8459 (6)	0.4778 (3)	1008 (42)
C(34)	0.1053 (5)	0.9394 (5)	0.4268 (4)	1017 (43)
C(35)	0.0649 (5)	0.9100 (4)	0.3570 (3)	906 (38)
C(36)	0.0216 (4)	0.7849 (4)	0.3375 (2)	693 (27)
C(41)	0.3860 (3)	0.3513 (4)	0.4038 (2)	572 (22)
C(42)	0.4749 (4)	0.4550 (4)	0.4108 (2)	760 (29)
C(43)	0.6019 (5)	0.4352 (6)	0.3936 (3)	948 (38)
C(44)	0.6401 (4)	0.3169 (6)	0.3702 (3)	922 (37)
C(45)	0.5504 (5)	0.2140 (5)	0.3631 (2)	851 (34)
C(46)	0.4229 (4)	0.2307 (4)	0.3801 (2)	681 (27)

Table 2. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{P}(1)-\mathrm{S}(1)$	$1.899(1)$	$\mathrm{S}(2)-\mathrm{C}(21)$	$1.793(4)$
$\mathrm{P}(1)-\mathrm{S}(3)$	$2.099(1)$	$\mathrm{S}(3)-\mathrm{C}(31)$	$1.778(4)$
$\mathrm{P}(1)-\mathrm{S}(2)$	$2.103(1)$	$\mathrm{S}(4)-\mathrm{C}(41)$	$1.780(4)$
$\mathrm{P}(1)-\mathrm{S}(4)$	$2.103(1)$		
$\mathrm{S}(1)-\mathrm{P}(1)-\mathrm{S}(2)$	$117.66(6)$	$\mathrm{S}(3)-\mathrm{P}(1)-\mathrm{S}(4)$	$101.50(6)$
$\mathrm{S}(1)-\mathrm{P}(1)-\mathrm{S}(3)$	$117.02(6)$	$\mathrm{C}(21)-\mathrm{S}(2)-\mathrm{P}(1)$	$101.7(1)$
$\mathrm{S}(1)-\mathrm{P}(1)-\mathrm{S}(4)$	$116.70(6)$	$\mathrm{C}(31)-\mathrm{S}(3)-\mathrm{P}(1)$	$101.0(1)$
$\mathrm{S}(2)-\mathrm{P}(1)-\mathrm{S}(3)$	$100.16(6)$	$\mathrm{C}(41)-\mathrm{S}(4)-\mathrm{P}(1)$	$100.2(1)$
$\mathrm{S}(2)-\mathrm{P}(1)-\mathrm{S}(4)$	$100.89(6)$		

The program PLOTMD (Luo, Ammon \& Gilliland, 1989) was used to modify the labels of the ORTEP drawing (Johnson, 1976) displayed in Fig. 1. Positional parameters and isotropic temperature factors are listed in Table 1; bond lengths and angles are listed in Table 2.* In Fig. 2, the crystal packing is displayed.

Related literature. The structure of $\left(\mathrm{Me}_{3} \mathrm{SnS}\right)_{3} \mathrm{PS}$ (Shihada \& Weller, 1988), possessing a strain-free $\mathrm{SP}(\mathrm{SR})_{3}$ unit, has been reported. The terminal $\mathrm{P}-\mathrm{S}$ bond length in that compound [1.948 (2) \AA] is substantially longer than the one found here [1.899 (1) \AA].

[^0]Financial support of this research by NSF grant \# DMR 89-13738 is gratefully acknowledged.

References

Busing, W. R. \& Levy, H. A. (1957). Acta Cryst. 10, 180-182.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee 37830, USA.
luo, J., Ammon, H. L. \& Gilliland, G. L. (1989). J. Appl. Cryst. 22, 186.

Sheldrick, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford Univ. Press.
Shibao, R. K., Keder, N. L. \& Eckert, H. (1990). Inorg Chem. 29, 4163-4166.
Shimada, A.-F. \& Weller, F. (1988). J. Organomet. Chem. 342, 177-183.
Strouse, C. (1985). UCLA Crystallographic Program Package. Department of Chemistry and Biochemistry, Univ. of California, Los Angeles, USA.

Acta Cryst. (1992). C48, 1527-1528

Structure of 7-Acetyl-2,5,9-trinitro-2,5,7,9-tetraazabicyclo[4.3.0|nonan-8-one

By Clifford George, Richard Gilardi and Judith L. Flippen-Anderson
Laboratory for the Structure of Matter, Naval Research Laboratory, Washington, DC 20375, USA

(Received 19 August 1991; accepted 17 December 1991)

Abstract

C}_{7} \mathrm{H}_{9} \mathrm{~N}_{7} \mathrm{O}_{8}, M_{r}=319.2\), monoclinic, $P 2_{1} / n$, $a=10.615$ (1),$\quad b=9.115$ (2), $c=12.948$ (2) $\AA, \quad \beta=$ $108.57(1)^{\circ}, \quad V=1187.6(3) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.785 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Cu} K \alpha)=1.54184 \AA, \quad \mu=$ $1.38 \mathrm{~mm}^{-1}, F(000)=656, T=295 \mathrm{~K}$, final $R=$ $0.039, w R=0.044$ for 1327 independent observed reflections. The five-membered ring has a normal envelope conformation while the six-membered ring has adopted a twisted boat conformation. Of the three nitroamine groups one is planar and the other two are pyramidal with $\mathrm{N}-\mathrm{N}$ to $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angles of $0.5,43.4$ and 44.8° respectively.

Experimental. A clear colorless prism $0.15 \times 0.20 \times$ 0.26 mm data crystal was provided by Dr Clifford L. Coon of Livermore National Laboratory, California. An automated Siemens $R 3 \mathrm{~m} / V$ diffractometer with incident beam monochromator was used for data collection. 25 centered reflections within $20.0 \leq 2 \theta \leq$ 77.0° were used for determining lattice parameters. $[\sin (\theta) / \lambda]_{\max }=0.54 \AA^{-1}$; range of $h k l:-11 \leq h \leq 10$ $-9 \leq k \leq 2,0 \leq l \leq 13$. Standards 200, 020 and 002, monitored every 97 reflections, showed random variation of 2.5% over data collection: $\theta / 2 \theta$ scan mode, scan width $\left[2 \theta\left(K \alpha_{1}\right)-1.0\right]$ to $\left[2 \theta\left(K \alpha_{2}\right)+\right.$ $1.0]^{\circ}, \omega$-scan rate a function of count rate ($7.0^{\circ} \mathrm{min}^{-1}$ minimum, $15.0^{\circ} \mathrm{min}^{-1}$ maximum), 1808 reflections measured, 1545 unique, $R_{\text {int }}=1.2 \%, 1327$ observed with $F_{o}>3 \sigma\left(F_{o}\right)$. Data were corrected for Lorentz and polarization effects.

The structure solution, by direct methods, and the full-matrix least-squares refinement used programs in SHELXTL80 (Sheldrick, 1980). $\quad \sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ was minimized where $w=1 /\left[\sigma^{2}\left(\left|F_{o}\right|\right)+g\left(F_{o}\right)^{2}\right], g=$
0.000225. Secondary-extinction parameter $p=$ $0.004(1) \quad$ in $\quad F_{c}^{*}=F_{c} /\left[1.0+0.002(p) F_{o}{ }^{2} / \sin (2 \theta)\right]^{0.25}$. 236 parameters were refined: atomic coordinates for all atoms, anisotropic thermal parameters for all non- H atoms and isotropic thermal parameters for H atoms. $(\Delta / \sigma)_{\max }=0.12$, ratio of observations to parameters $=5.6: 1, R=0.039, w R=0.044, S=1.39$ ($R=0.046$ for all data). Final difference Fourier excursions were 0.18 and -0.20 e \AA^{-3}. Atomic scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV). \dagger Atom numbering for Tables 1 (atom coordinates) and 2 (bond distances and angles) follows that shown in Fig. 1.
\dagger Lists of structure factors, anisotropic thermal parameters and H -atom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54969 (9 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England. [CIF reference: HH0573]

Fig. 1. A thermal ellipsoid plot of the title compound with ellipsoids drawn at the 20% probability level.
(C) 1992 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters, H -atom coordinates and bond lengths and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54964 (20 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HH0567]

